VC3123／5通讯协议

上位PC联机通讯协议

1．系统通信构成

- 全双工UART TO USB通信
- 通信波特率： 4800
- 点对点联接通信：上位 PC 为主机绝缘表为从机
－通信数据帧格式

－通信接收数据采用中断方式
通信发送数据采用查询方式
＊通信接收数据区：URXM区

＊通信发送数据区：UTXM区

	UTXM区
$@_{\text {L }}$	D7～D0
	D7～D0
	．．．
	D7～D0

2．系统通信协议

－通信命令格式

STX	command	parameter	EM

STX	1字节ASCII码＇0＇
command	2字节ASC II 码
parameter	N字节的ASC II 码
EV	2字节ASCII码＇CRLF＇

－通信数据格式

STX	command	data	EM

$\begin{cases}\text { STX } & : 2 \text { 字节ASC II 码 ‘\＃\＄’ } \\ \text { command } & : \\ \text { data } & \text { 字节的ASC II 码 } \\ \text { EM } & \text { N字节的ASC II码／HEX数据 } \\ \text { ：} & 3 \text { 字节ASC II码 ‘？CRLF },\end{cases}$

说明：data的数据格式由原来的N字节ASCLL码变为 $2 N$ 字节！也就是将原来的 1 个字节数据分为高 4 字节和低 4 字节，然后分别加上 0×30 就构成 2 个字节。拆分举例如下（HEX数据格式）：

若原来返回数据为＂ 06 ＂，则现在返回＂ 3036 ＂；
若原来返回数据为＂3F D8＂，则现在返回＂33 3F 3 3D 38＂
－通信应答

$$
\begin{aligned}
& \text { * 通信正确应答 (ACK) : 2字节的ASC II 码 } \\
& \text { ACK }=0 \times 30 \text { 0X36 }
\end{aligned}
$$

＊通信非正确应答（NACK）：2字节的ASCII码

$$
\mathrm{NAK}=0 \times 310 X 35
$$

说明：
3125测量功能及量程

FUN	RANG	DCA	AFUN	DCARAN	IRMRAN
DCV	1000 V	／	0	／	／
ACV	600.0 V	／	1	／	／
IRM＿5000V	000．0－009．9M Ω	1500 uA	2	8	0
	010．0－020．0M Ω	1500 uA	2	8	1
	020．0－099．9M Ω	250．0uA	2	7	1
	0100－0200M Ω	50.00 uA	2	6	2
	0200－0999M Ω	25.00 uA	2	5	2
	01．00－02．00G Ω	5.000 uA	2	4	3
	02．00－09．99G Ω	2.500 uA	2	3	3
	010．0－020．0G Ω	0.500 uA	2	2	4
	020．0－099．9G Ω	0．250uA	2	1	4
	0100－0999G Ω	0.050 uA	2	0	5
	$01.00-01.20 \mathrm{~T} \Omega$	0.050 uA	2	0	6
	OL	0.050 uA	2	0	7
IRM＿2500V	000．0－009．9M Ω	1500uA	3	8	0
	010．0－050．0M	250．0uA	3	7	1
	050．0－099．9M Ω	50.00 uA	3	6	1
	$0100-0500 \mathrm{M} \Omega$	25.00 uA	3	5	2
	0500－0999M Ω	5.000 uA	3	4	2
	$01.00-05.00 \mathrm{G} \Omega$	2.500 uA	3	3	3
	05．00－09．99G Ω	0.500 uA	3	2	3
	010．0－050．0G Ω	0．250uA	3	1	4
	$050.0-099.9 \mathrm{G} \Omega$	0.050 uA	3	0	4
	OL	0.050 uA	3	0	7
IRM＿1000V	000．0－004．0M Ω	1500 uA	4	8	0
	$004.0-009.9 \mathrm{M} \Omega$	250．0uA	4	7	0
	010．0－ $020.0 \mathrm{M} \Omega$	250.0 uA	4	7	1
	020．0－040．0M Ω	50.00 uA	4	6	1
	$040.0-099.9 \mathrm{M} \Omega$	25.00 uA	4	5	1
	0100－0200M Ω	25.00 uA	4	5	2
	0200－0400M Ω	5.000 uA	4	4	2
	0400－0999M Ω	2.500 uA	4	3	2
	01．00－02．00G Ω	2.500 uA	4	3	3
	02．00－04．00G Ω	0.500 uA	4	2	3
	04．00－09．99G Ω	0.250 uA	4	1	3
	0L	0.050 uA	4	0	7
IRM＿500V	000．0－002．0M Ω	1500uA	5	8	0
	002．0－009．9M Ω	250．0uA	5	7	0
	$010.0-020.0 \mathrm{M} \Omega$	50.00 uA	5	6	1
	020．0－099．9M Ω	25.00 uA	5	5	1
	0100－0200M Ω	5.000 uA	5	4	2
	0200－0999M Ω	2.500 uA	5	3	2
	01．00－02．00G Ω	0.500 uA	5	2	3
	02．00－05．00G Ω	0.250 uA	5	1	3
	0L	0.050 uA	5	0	7

说明：
3123 测量功能及量程

FUN	RANG	DCA	AFUN	DCARAN	IRMRAN
DCV	1000 V	／	0	／	／
ACV	600.0 V	／	1	／	／
IRM＿2500V	000．0－009．9M Ω	1500uA	2	8	0
	$010.0-050.0 \mathrm{M} \Omega$	250．0uA	2	7	1
	050．0－099．9M Ω	50.00 uA	2	6	1
	$0100-0500 \mathrm{M} \Omega$	25．00uA	2	5	2
	0500－0999M Ω	5.00 uA	2	4	2
	01．00－ $05.00 \mathrm{G} \Omega$	2． 500 uA	2	3	3
	05．00－09．99G Ω	0.500 uA	2	2	3
	$010.0-050.0 \mathrm{G} \Omega$	0.250 uA	2	1	4
	$050.0-099.9 \mathrm{G} \Omega$	0.050 uA	2	0	4
	OL	0.050 uA	2	0	5
IRM＿1000V	$000.0-004.0 \mathrm{M} \Omega$	1500 uA	3	8	0
	004．0－009．9M Ω	250．0uA	3	7	0
	010．0－020．0M Ω	250．0uA	3	7	1
	$020.0-040.0 \mathrm{M} \Omega$	50.00 uA	3	6	1
	040．0－099．9M Ω	25.00 uA	3	5	1
	$0100-0200 \mathrm{M} \Omega$	25．00uA	3	5	2
	$0200-0400 \mathrm{M} \Omega$	5.000 uA	3	4	2
	0400－0999M Ω	2.500 uA	3	3	2
	01．00－02．00G Ω	2.500 uA	3	3	3
	02．00－－－04．00G Ω	0.500 uA	3	2	3
	04．00－－－09．99G Ω	0.250 uA	3	1	3
	0L	0.050 uA	3	0	5
IRM＿500V	$000.0-002.0 \mathrm{M} \Omega$	1500 uA	4	8	0
	002．0－009．9M Ω	250．0uA	4	7	0
	$010.0-020.0 \mathrm{M} \Omega$	50.00 uA	4	6	1
	020．0－099．9M Ω	25.00 uA	4	5	1
	$0100-0200 \mathrm{M} \Omega$	5.000 uA	4	4	2
	0200－0999M Ω	2.500 uA	4	3	2
	01．00－－－－02．00G Ω	0.500 uA	4	2	3
	02．00－－－－05．00G Ω	0.250 uA	4	1	3
	0L	0.050 uA	4	0	5
TRM＿250V	$000.0-000.9 \mathrm{M} \Omega$	1500 uA	5	8	0
	$001.0-005.0 \mathrm{M} \Omega$	250．0uA	5	7	0
	$005.0-009.9 \mathrm{M} \Omega$	50.00 uA	5	6	0
	$010.0-050.0 \mathrm{M} \Omega$	25.00 uA	5	5	1
	050．0－099．9M Ω	5.000 uA	5	4	1
	$0100-0500 \mathrm{M} \Omega$	2.500 uA	5	3	2
	0500－0999M Ω	0.500 uA	5	2	2
	01．00－02．50G Ω	0.250 uA	5	1	3
	OL	0.050 uA	5	0	5

3．系统通信控制

－PC通讯联机命令（PC＿ONLINE）
＊发送命令（ESC R）

$$
\text { command }=0 \text { ESC R CRLF }
$$

＊返回数据

$$
\begin{aligned}
\text { answer } & =\# \$ \text { ESC R ACK ?CRLF } \\
& =\# \$ \text { ESC R m ?CRLF }
\end{aligned}
$$

＊说明
PC通信联机完成，绝缘表被设置为远端控制
PC通信联机成功，则返回确认应答（ACK）

PC通信联机完成，绝缘表面板按键和档位操作被屏蔽，并且绝缘表工作在以下状态：

Measure ：FUN＿SW4
高压关闭状态

PC通信联机不成功，则返回错误提示应答（m）
$\mathrm{m}=0 \times 30$ 0X30：高压正在发生，未关闭
$=0 \times 30$ 0X31：logging记录正在发生，未停止
＝0X30 0X32：电池电量不足
－PC通讯关闭命令（PC＿OFFLINE）
＊发送命令（ESC L）

$$
\text { command }=0 \text { ESC L CRLF } 30 \text { 1B 4C OD OA }
$$

＊返回数据

$$
\begin{aligned}
\text { answer } & =\# \$ \text { ESC L ACK ?CRLF } \\
& =\# \$ \text { ESC L NAK ?CRLF }
\end{aligned}
$$

＊说明
PC通信关闭完成，绝缘表被设置为本地控制，则返回确认应答（ACK）绝缘表恢复正常工作，面板按键，档位操作释放，显示正常信息，绝缘表工作在当前所处的档位下。

若高压正在发生，没有关闭，则返回非确认应答（NAK）
－测量功能设置／询问命令（MEAM＿FUN）
＊发送命令（MF）
设置：command $=0 \mathrm{MF} \mathrm{m}$ CRLF
询问：command＝ 0 MF ？CRLF
304 D 4600 0D OA $304 D 46$ 3F OD OA
＊返回数据
询问：answer＝\＃ MF m ？CRLF
＊说明

```
设置的功能参数 m=0x00 : MEM
    =0x01 : 5000V (3125)/2500V (3123)
    =0x02 : 2500V (3125)/1000V (3123)
    =0x03 : V
    =0x04 : 500V (3125)/250V (3123)
    =0x05 : 1000V (3125)/500V (3123)
询问返回的功能参数 m=0x30 0x30 : MEM
    =0x30 0x31 : 5000V (3125)/2500V (3123)
    =0x30 0x32 : 2500V (3125)/1000V (3123)
    =0x30 0x33 : V
    =0x30 0x34 : 500V (3125)/250V (3123)
    =0x30 0x35 : 1000V (3125)/500V (3123)
```

－高压开启／关闭／询问命令（MEAM＿TEST）
＊发送命令（MT）
设置：command $=0 \mathrm{MT} \mathrm{m}$ CRLF
询问：command＝0 MT ？CRLF

304 D 5400 OD OA 304 D 54 3F 0D OA
＊返回数据
询问：answer＝\＃\＄MT m ？CRLF
＝\＃\＄MT NAK ？CRLF
＊说明
设置参数 $m=0 \times 01$ ：关闭 $=0 \times 00$ ：开启

询问返回参数 $m=0 x 300 x 31$ ：关闭

$$
=0 \times 300 \times 30 \text { : 开启 }
$$

若当前档位设置在V档或是MEM档，则返回非确认应答（NAK），
即不可进行高压开启设置／关闭设置／询问。
－ $\mathrm{AC} / \mathrm{DC}$ 切换／询问命令（AC／DC＿SWITCH）
＊发送命令（MV）
设置 ：command $=0 \mathrm{MV} \mathrm{m}$ CRLF

304 D 5600 OD OA
304 D 563 F 0 D OA
＊返回数据
询问：answer＝\＃\＄MV m ？CRLF
= \#\$ MV NAK ?CRLF
＊说明
设置的参数 $m=0 x 00: ~ D C$
$=0 \mathrm{x} 01$ ：AC
询问返回的参数 $\mathrm{m}=0 \times 300 \times 30$ ：DC $=0 \times 300 \times 31: A C$

只有当当前档位设置在 V 档时，才可进行 $\mathrm{AC} / \mathrm{DC}$ 切换设置，
否则返回非确认应答（NAK）
－阶梯发生时间设定／询问命令（STEP＿TIME）
＊发送命令（ME）

设置 ：command $=0 \mathrm{ME} \mathrm{m}$ CRLF 304 D 4500 0D OA
询问：command＝0 ME ？CRLF 304 D 45 3F 0D OA
＊返回数据

询问：answer＝\＃ME m ？CRLF
= \#\$ ME NAK ?CRLF
＊说明
设置的阶梯发生周期参数 $\mathrm{m}=0 \mathrm{x} 00$ ： 30 s

$$
\begin{aligned}
& =0 \times 01: 1 \mathrm{~m} \\
& =0 \times 02: 2 \mathrm{~m} \\
& =0 \times 03: 5 \mathrm{~m}
\end{aligned}
$$

询问返回的阶梯发生周期参数 m＝0x30 0x30：30s

$$
\begin{aligned}
& =0 \times 300 \times 31: 1 \mathrm{~m} \\
& =0 \times 300 \times 32: 2 \mathrm{~m} \\
& =0 \times 300 \times 33: 5 \mathrm{~m}
\end{aligned}
$$

当阶梯正在发生时，否则返回非确认应答（NAK），
即不可进行阶梯发生时间的设置。
－阶梯发生／询问命令（MEAM＿STEP）
＊发送命令（MP）
启动：command $=0 \mathrm{MP} 1 \mathrm{CRLF}$
30 4D 5001 OD OA
询问：command＝ 0 MP ？CRLF 304 D 503 F 0 D 0 A
＊返回数据
启动 ：command＝\＃\＄MP NAK CRLF
询问：answer＝\＃\＄MP m ？CRLF
＊说明
阶梯发生工作参数 $\mathrm{m}=0 \times 300 \times 30$ ：未完成
$=0 \times 300 \times 31$ ：启动（阶梯发生命令参数） $=0 \times 300 \times 32$ ：阶梯发生完成

3125：当功能档位未设置在 2500 V 档或 5000 V 档或高压正在发生时，则返回非确认应答（NAK），即不可进行阶梯发生的启动。

3123：当功能档位未设置在2500V档或高压正在发生时，
返回非确认应答（NAK），即不可进行阶梯发生的启动。
－测量数据实时读取命令（MEAM＿CURRENT）
＊发送命令（MC）

$$
\begin{array}{l|l}
\text { command }=0 \mathrm{MC} ? & \text { CRLF } \\
304 \mathrm{D} 43 & 3 \mathrm{~F} \text { OD OA }
\end{array}
$$

＊返回数据

$$
\begin{aligned}
\text { answer } & =\# \$ \text { MC data ?CRLF } \\
& =\# \$ \text { MC NAK ?CRLF }
\end{aligned}
$$

＊说明
读取当前功能量程下的测量值
data 数据格式：HEX实时测量数据

实时测量数据的对应关系：
1．若当前档位设置在 V 档时，有意义的实时数据项有 $A F U N[$ 有效值为 $0 x 300 x 30$（DC测量）和 $0 \times 300 \times 31$（AC测量）。默认值为 $0 \times 300 x 30$ 。可通过设置＂AC／DC切换＂命令进行 $\mathrm{AC} / \mathrm{DC}$ 的切换测量］；DCV［AFUN为 $0 x 300 x 30$ 时，该位为 $D C$ 值（可正可负），AFUN为 $0 \times 300 \times 31$ 时，该位为 $A C$ 值（非负值）］；TEMP［实时温度值（可正可负）］。

2．若当前档位设置处于MEM档位时，则返回非确认应答（NAK）。

3．绝缘电阻档时，各实时数据项均有意义。AFUN［有效值有 $0 \times 300 \times 32$（ 5000 V 档 $/ 3125$或 2500 V 档 $/ 3123$ ）， $0 \times 300 \times 33$（2500V档 $/ 3125$ 或 1000 V 档 $/ 3123$ ）， $0 \times 300 \times 34$（ 1000 V档 $/ 3125$ 或 500 V 档 $/ 3123$ ）， $0 \times 300 \times 35 ~(500 \mathrm{~V}$ 档 $/ 3125$ 或 250 V 档 $/ 3123$ ），］；IRM［实时电阻值（非负）］；DCA［实时电流值（非负）］；DCV［实时电压值（非负值）］；
DCA＿RANG［实时电流量程（非负）］；IRM＿RANG［实时电阻量程（非负）］；
TEMP［实时温度值（可正可负）］。

测量值的小数点是固定位置，由其功能量程确定（对应关系详见P4，P5页）
当测量值超限（OL）时，数据为 $0 X 0 D$ OXOC（DCA＿RANG1，IRM＿RANG1）／OXOD OXOC OXOD OXOC（DCA1）／OXOD OXOC OXOD OXOC OXOD OXOC OXOD OXOC（IRM1）

当某测量值不存在时，数据为0X05 0X0A（DCA＿RANG1，IRM＿RANG1）／OX05
0XOA 0X05 0X0A（DCA1）／0X05 0X0A 0X05 0X0A 0X05 0X0A 0X05 0X0A（IRM1）
－LOGGING记录区数据读取命令（MEAM＿LOGGING）
＊发送命令（ML）
command $=0 \mathrm{ML} \mathrm{m}$ CRLF 304 D 4C 0401 OD OA
＊返回数据

$$
\begin{aligned}
\text { answer } & =\# \$ \text { ML data ?CRLF } \\
& =\# \$ \text { ML NAK ?CRLF }
\end{aligned}
$$

＊说明
读取LOGGING记录区的记录数据
LOGGING记录区数据读取参数 m ：表示读取第 m 条记录（ $0<\mathrm{m} \leqslant 260$ ）
$\mathrm{m}=0 \mathrm{x} 010 \mathrm{x} 00$ 到 0 x 040 x 01 （即：将十进制数 1 到 260 转化为两个字节的十六进制数，先发低字节，再发高字节）

当前档位设置非MEM档或者读取的第m条记录不存在时，
则返回非确认应答NAK
Data 数据格式：HEX LONGGING区纪录数据（见下页）

	tarray char		
$\overline{a_{L}} \quad \overline{\text { int }}$		Char0	IRM测量起始年时间－－－－NTIME
		Char2	IRM测量起始月时间－－－－YTIME
		Char3	IRM测量起始日时间－－－－RTIME
		Char4	IRM测量起始小时－－－－HTIME
		Char5	IRM测量起始分钟－－－MTIME
		Char6	IRM测量起始秒钟－－－－STIME
,ints		Char7 ：	IRM测量起始时的温度－－－STEVP
		Char9	INPUT工作子态寄存器－－－－STIN
		Char10	INPUT功能寄存器－－－－AFUN
long		Char11 :	IRM
	iniz	Char15	DCA
	ints	Char17 ：	DCV
		Char19	DCA＿RANG
		Char20	IRM＿RANG

LOGGING区记录数据的含义：

1．固定项
NTIVE：存储该条记录的年时间。
YTIVE：存储该条记录的月时间。
RTIVE：存储该条记录的日时间。
HTIVE：存储该条记录的起始分钟时间。
MTIME：存储该条记录的起始小时时间。
STIVE：存储该条记录的起始秒钟时间。
STEMP：存储该条记录时的温度值（可正可负）。
STIN：该条记录的工作状态［有效值有 $0 \times 300 \times 30$（绝缘电阻测量）；0x30 0x3A（电压测量）］。
AFUN：存储该条记录时的档位值［有效值有 $0 \times 300 \times 30$（直流电压测量档，测量前可通过按＂ $\mathrm{AC} / \mathrm{DC}$＂键切换到交流电压测量档，此时AFUN的有效值为 $0 \times 300 x 31$ ）］；0x30 $0 \times 32[5000 \mathrm{~V}$ 档 $/ 3125$
或 2500 V 档 $/ 3123]$ ；0x30 0x33［2500V档／3125或1000V档／3123］；0x30 0x34［1000V档／3125或 500 V 档 $/ 3123]$ ；0x30 0x35［500V档／3125或250V档／3123］。

2．特殊项
2． 1 当STIN为 $0 \times 300 \times 30$ 时：
IRM：实时电阻值（非负）。
DCA：实时电流值（非负）。
DCV：实时电压值（非负值）。
DCA＿RANG：实时电流量程（非负）。
TRM＿RANG：实时电阻量程（非负）。
2． 2 当STIN为 $0 \times 300 \times 3 A$ 且AFUN为 $0 \times 300 \times 30$ 时：
TRM：全零。
DCA：全零。
DCV：实时直流电压值（可正可负）。
DCA＿RANG：全零。
TRM＿RANG：全零。
2.3 当STIN为 $0 \times 300 \times 3 A$ 且AFUN为 $0 \times 300 \times 31$ 时：

IRM：全零。
DCA：全零。
DCV：实时交流电压值（非负值）。
DCA＿RANG：全零。
TRM＿RANG：全零。
－SAVE记录区数据读取命令（MEAM＿SAVE）
＊发送命令（MS）

$$
\text { command }=0 \mathrm{MS} \mathrm{~m} \text { CRLF }
$$

＊返回数据

$$
\begin{aligned}
\text { answer } & =\# \$ \text { MS data ?CRLF } \\
& =\# \$ \text { MS NAK ?CRLF }
\end{aligned}
$$

＊说明
读取SAVE记录区的记录数据
SAVE记录区数据读取参数 m ：表示读取第 m 条记录（ $0<\mathrm{m} \leqslant 500$ ）
$\mathrm{m}=0 \mathrm{x} 010 \mathrm{x} 00$ 到 0 xF 40 x 01 （即：将十进制数1到500转化为两个字节的十六进制数，先发低字节，再发高字节）

当前档位设置非MEM档或者读取的第m条记录不存在时，
则返回非确认应答NAK
data 数据格式：HEX SAVE区纪录数据（见下页）

VC3123／5通讯协议

	aly	
$\overline{@_{\mathrm{L}}}$	Char0	IRM测量起始年时间－－－－NTIME
	Char2	IRM测量起始月时间－－－－YTIME
	Char3	IRM测量起始日时间－－－－RTIME
	Char4	IRM测量起始小时－－－－HTIME
	Char5	IRM测量起始分钟－－－－MTIME
	Char6	IRM测量起始秒钟－－－－STIME
vint	Char7	IRM测量起始时的温度－－－STEVIP
	Char9	INPUT工作子态寄存器－－－－STIN
	Char10	INPUT功能寄存器－－－－AFUN
Sints	Char11	PI值
ints	Char13	DAR值
	Char15	C0MP值
Sints	Char16	STEP值
Eint	Char18	Set value1
	Char20	Set IRM＿RANG
Yoons	Char21	IRM1
Sint	Char25	DCA1
语	Char27	DCV1

Eint	Char29	DCA_RANG1
	Char30	IRM_RANG1
	Char31	Set value 2
Elons	Char33	IRM2
Eints	Char37	DCA2
Sint	Char39	DCV2
	Char41	DCA_RANG2
	Char42	IRM_RANG2
Sint	Char43	Set value3
Elons	Char45	IRM3
Sint	Char49 :	DCA3
Eint?	Char51	DCV3
	Char53	DCA_RANG3
	Char54	IRM_RANG3
Eint	Char55	Set value 4
Elons	Char57 :	IRM4
Eint	Char61	DCA4
Einf	Char63	DCV4
	Char65	DCA_RANG4
	Char66	IRM_RANG4
Einf	Char67	Set value5
Eons	Char69	IRM5
Eint	Char73	DCA5
Eint	Char75	DCV5
	Char77	DCA_RANG5
	Char78	IRM_RANG5

SAVE区记录数据的含义（无意义的数据项取值全零）：

1．固定项
NTIVE：存储该条记录的年时间。
YTIVE：存储该条记录的月时间。
RTIME：存储该条记录的日时间。
HTIME：存储该条记录的起始分钟时间。
MTIME：存储该条记录的起始小时时间。
STIVE：存储该条记录的起始秒钟时间。
STEMP：存储该条记录时的温度值（可正可负）。
STIN：该条记录的工作状态［有效值有 $0 \times 300 \times 30$（绝缘电阻测量）；0x30 0x31（定时器测量）；0x30 0×32（极化指数测量）；0x30 0x33（感应吸收比测量）；0x30 0x34（比较功能测量）；0x30 0×35（步进电压测量）；0x310x30（电压测量）］。
AFUN：存储该条记录时的档位值［有效值有 $0 \times 300 \times 30$（直流电压测量档，测量前可通过按＂ $\mathrm{AC} / \mathrm{DC}$＂键切换到交流电压测量档，此时AFUN的有效值为 $0 x 300 x 31$ ）］；0x30 $0 \times 32[5000 \mathrm{~V}$ 档 $/ 3125$
或 2500 V 档 $/ 3123]$ ；0x30 0x33［2500v档／3125或 1000 V 档 $/ 3123]$ ；0x30 0x34［1000v档／3125或 500 V 档 $/ 3123$ ］；0x30 $0 \times 35[500 \mathrm{~V}$ 档 $/ 3125$ 或 250 V 档 $/ 3123$ ］。
PI：STIN为 $0 x 300 x 32$ 时才有意义（非负值），否则无意义。
DAR：STIN为 $0 x 300 x 33$ 时才有意义（非负值），否则无意义。
COMP：STIN为 $0 x 30$ 0x34时才有意义（ $0 X 30$ 0X30表示＇G00D’；0X30 0X31表示’ NG＇），否则无意义。
STEP：STIN为 $0 \times 300 \times 35$ 时才有意义（ $0 X 300 X 30$ 表示步进电压时间为 30 s ；0X30 0X31表示步进电压时间为 1 m ；0X30 0X32表示步进电压时间为 2 m ；0X30 0X33表示步进电压时间为 5 m ），否则无意义。
Set IRM＿RANG：STIN为 $0 \times 300 \times 34$ 时才有意义，表示比较功能下设置的电阻量程（非负值），否则无意义。

2．特殊项

2．1 Set value1（非负值）：
当STIN为 $0 \times 300 \times 31$ 时，表示定时时间；
当STIN为 $0 \times 300 \times 32$ 时，表示time1的定时时间；当STIN为 $0 \times 300 \times 33$ 时，表示time1的定时时间；当STIN为 $0 \times 300 \times 34$ 时，表示比较功能下设置的电阻值；当STIN为 $0 \times 300 \times 35$ 时，表示完成阶梯 1 所用的时间；否则无意义。

2． 2 IRM1（非负）：
当STIN为 $0 \times 300 \times 30$ 时，表示实时测量的电阻值；当STIN为 $0 \times 300 \times 31$ 时，表示定时到时刻的电阻值；当STIN为 $0 \times 300 \times 32$ 时，表示time1时刻的电阻值；当STIN为 $0 x 300 x 33$ 时，表示time1时刻的电阻值；当STIN为 $0 \times 300 \times 34$ 时，表示实时测量的电阻值；当STIN为 $0 \times 300 \times 35$ 时，表示阶梯 1 结束时刻测量的电阻值；否则无意义。

2．3 DCA1（非负值）：

当STIN为 $0 \times 300 \times 30$ 时，表示实时测量的电流值；
当STIN为 $0 \times 300 \times 31$ 时，表示定时到时刻的电流值；
当STIN为 $0 \times 300 \times 32$ 时，表示time1时刻的电流值；
当STIN为 $0 x 300 x 33$ 时，表示time1时刻的电流值；
当STIN为 $0 \times 300 \times 34$ 时，表示实时测量的电流值；
当STIN为 $0 \times 300 \times 35$ 时，表示阶梯 1 结束时刻测量的电流值；否则无意义。

2． 4 DCV1：

当STIN为 $0 \times 300 \times 30$ 时，表示实时测量的直流电压值（非负）；当STIN为 $0 x 300 \times 31$ 时，表示定时到时刻的直流电压值（非负）；当STIN为 $0 \times 300 \times 32$ 时，表示time1时刻的直流电压值（非负）；当STIN为 $0 \times 300 \times 33$ 时，表示time 1 时刻的直流电压值（非负）；当STIN为 $0 \times 300 \times 34$ 时，表示实时测量的直流电压值（非负）；当STIN为 $0 \times 300 \times 35$ 时，表示阶梯 1 结束时刻测量的直流电压值（非负）；当STIN为 $0 \times 300 \times 3 A$ 且AFUN为 $0 \times 300 \times 30$ 时，表示实时测量的直流电压值（可正可负）。当STIN为 $0 \times 300 \times 3 A$ 且AFUN为 $0 \times 300 \times 31$ 时，表示实时测量的交流电压值（非负）。
2.5 DCA＿RANG1（非负值）：

当STIN为 $0 \times 300 \times 30$ 时，表示实时测量的电流量程；当STIN为 $0 x 300 x 31$ 时，表示定时到时刻的电流量程；当STIN为 $0 \times 300 \times 32$ 时，表示time1时刻的电流量程；当STIN为 $0 \times 300 \times 33$ 时，表示time1时刻的电流量程；当STIN为 $0 \times 300 \times 34$ 时，表示实时测量的电流量程；当STIN为 $0 x 300 x 35$ 时，表示阶梯 1 结束时刻测量的电流量程；否则无意义。

2． 6 IRM＿RANG1（非负）：
当STIN为 $0 \times 300 \times 30$ 时，表示实时测量的电阻量程；
当STIN为 $0 x 300 x 31$ 时，表示定时到时刻的电阻量程；
当STIN为 $0 \times 300 \times 32$ 时，表示time1时刻的电阻量程；
当STIN为 $0 \times 300 \times 33$ 时，表示time1时刻的电阻量程；
当STIN为 $0 \times 300 \times 34$ 时，表示实时测量的电阻量程；
当STIN为 $0 \times 300 \times 35$ 时，表示阶梯 1 结束时刻测量的电阻量程；否则无意义。

2．7 Set value2（非负值）：

当STIN为 $0 \times 300 \times 32$ 时，表示time2的定时时间；当STIN为 $0 \times 300 \times 33$ 时，表示time 2 的定时时间；当STIN为 $0 \times 300 \times 35$ 时，表示完成阶梯 2 所用的时间；否则无意义。

2．8 IRM2（非负）：
当STIN为 $0 \times 300 \times 32$ 时，表示time2时刻的电阻值；当STIN为 $0 \times 300 \times 33$ 时，表示time 2 时刻的电阻值；当STIN为 $0 \times 300 \times 35$ 时，表示阶梯 2 结束时刻测量的电阻值；否则无意义。
2.9 DCA2（非负值）：

当STIN为 $0 \times 300 \times 32$ 时，表示time2时刻的电流值；
当STIN为 $0 \times 300 \times 33$ 时，表示time2时刻的电流值；
当STIN为 $0 \times 300 \times 35$ 时，表示阶梯 2 结束时刻测量的电流值；否则无意义。

2． 10 DCV2（非负）：
当STIN为 $0 \times 300 \times 32$ 时，表示time 2 时刻的直流电压值；
当STIN为 $0 \times 300 \times 33$ 时，表示time2时刻的直流电压值；当STIN为 $0 x 300 x 35$ 时，表示阶梯 2 结束时刻测量的直流电压值；否则无意义。
2.11 DCA＿RANG3（非负值）：

当STIN为 $0 \times 300 \times 32$ 时，表示time2时刻的电流量程；
当STIN为 $0 x 300 x 33$ 时，表示time2时刻的电流量程；
当STIN为 $0 \times 300 \times 35$ 时，表示阶梯 2 结束时刻测量的电流量程；
否则无意义。
2． 12 TRM＿RANG2（非负）：
当STIN为 $0 \times 300 \times 32$ 时，表示time2时刻的电阻量程；
当STIN为 $0 x 300 \times 33$ 时，表示time2时刻的电阻量程；
当STIN为 $0 \times 300 \times 35$ 时，表示阶梯 2 结束时刻测量的电阻量程；
否则无意义。

2． 13 Set valueX（X＝3／4／5）（非负值）：
当STIN为 $0 \times 300 \times 35$ 时，表示完成阶梯 X 所用的时间；否则无意义。

2． 14 IRMX（非负）：
当STIN为 $0 \times 300 \times 35$ 时，表示阶梯X结束时刻测量的电阻值；否则无意义。
2.15 DCAX （非负值）：

当STIN为 $0 \times 300 \times 35$ 时，表示阶梯X结束时刻测量的电流值；否则无意义。

2． 16 DCVX （非负）：
当STIN为 $0 \times 300 \times 35$ 时，表示阶梯X结束时刻测量的直流电压值；否则无意义。

2． 17 DCA＿RANGX（非负值）：
当STIN为 $0 \times 300 \times 35$ 时，表示阶梯X结束时刻测量的电流量程；否则无意义。

2． 18 IRM＿RANGX（非负）：
当STIN为 $0 \times 300 \times 35$ 时，表示阶梯X结束时刻测量的电阻量程；否则无意义。
－对年月日命令（YEAR＿MONTH）
＊发送命令（MY）
设置 ：command $=0 \mathrm{MY} \mathrm{y} 1 \mathrm{y} 2 \mathrm{md}$ CRLF
询问：command $=0 \mathrm{MY}$ ？CRLF
304 D 59 DF 070202 OD 0A 304 D 59 3F 0D OA
＊返回数据

$$
\begin{aligned}
\text { answer } & =\# \$ \text { MY y11 y12 y21 y22 m1 m2 d1 d2 ?CRLF } \\
& =\# \$ \text { MY m ?CRLF }
\end{aligned}
$$

＊说明
年月日数据格式 ：
y1 y2 m d为年月日设置值（例如要设置2008年12月4日，
则 y 1 为 $\mathrm{D} 8, \mathrm{y} 2$ 为 $07, \mathrm{~m}$ 为 $0 \mathrm{C}, \mathrm{d}$ 为 04 。）
读取当前年月日设置值（例如当前设置时间为2008年12月4日，
则返回值 y 11 为 $30, \mathrm{y} 12$ 为 $37, ~ y 21$ 为 $3 \mathrm{D}, \mathrm{y} 22$ 为 38 ， m 1 为 $30, \mathrm{~m} 2$ 为 $3 \mathrm{C}, \mathrm{d} 1$ 为 $30, \mathrm{~d} 2$ 为 34 。）

对年月日设置返回的参数 m 为 3030 ，表示高压正在发生中，不可进行时间设置；
若 m 为非确认应答（NAK），则表示设置的时间数据不合理。

Bit	符号	挡 述
7	C	世纪位： $\mathrm{C}=0$ 指定世纪数为 $20 \times \times, \mathrm{C}=1$ 指定世纪数为 19 $\times \times$, ＂$\times \times$＂为年家存器中的值，参见表 16 。当年察存器中的值由 99 变为 00 时，世纪位会改变
6～5	－	无用
4～0	＜月＞	代表 BCD 格式的当前月份，值为 $01 \sim 12$ ；参见表 15

表15月分隹表

月份	Bit4	Bit3	Bit2	Bit1	Bit0
一月	0	0	0	0	1
二月	0	0	0	1	0
三月	0	0	0	1	1
化月	0	0	1	0	0
五月	0	0	1	0	1
六月	0	0	1	1	0
七月	0	0	1	1	1
八月	0	1	0	0	0
九月	0	1	0	0	1
十月	1	0	0	0	0
十一月	1	0	0	0	1
十二月	1	0	0	1	0

Bit	符号	描 述
$7 \sim 0$	＜年＞	代表 BCD 格式的当前年数值，值为 $00 \sim 99$

Bit	符号	㩲 述
7～6	－	无效
$5 \sim 0$	＜日＞	代表 BCD 格式的当前日数值，值为 $01 \sim 31$ 。当年计数興的值是闰年时，PCF8563 自动给二月增加一个值，使其成为 29 天

－对时分命令（TIVE）
＊发送命令（MV）

设置：command $=0 \mathrm{HM} \mathrm{h} \mathrm{m} \mathrm{CRLF}$
$30484 d 303 \mathrm{~d} 33$ 3B OD OA
询问：command $=0$ HM ？CRLF
＊返回数据

$$
\begin{aligned}
\text { answer } & =\# \$ \text { HM h1 h2 m1 m2 ?CRLF } \\
& =\# \$ \text { HM m ?CRLF }
\end{aligned}
$$

＊说明
时分数据格式：
$h \mathrm{~m}$ 为时分设置值（例如要设置 13 点 59 分，则 h 为 $0 D, m$ 为 $3 B$ 。）
读取当前时分设置值（例如当前设置时间为 13 点 59 分，则返回值 h 1

$$
\text { 为 } 30, h 2 \text { 为 } 3 \mathrm{D}, \mathrm{~m} 1 \text { 为 } 33, \mathrm{~m} 2 \text { 为 } 3 \mathrm{~B} \text { 。) }
$$

对时分设置返回的参数 m 为 3030 ，表示高压正在发生中，不可进行时间设置；
若 m 为非确认应答（NAK），则表示设置的时间数据不合理。

Bit	符号	描 述
7	-	无效
$6 \sim 0$	＜分钟＞	代表 $B C D$ 格式的当前分钟数值，值为 $00 \sim 59$

Bit	符号	描 述
$7 \sim 6$	-	无效
$5 \sim 0$	＜小时＞	代表 BCD 格式的当前小时数位，值为 $00 \sim 23$

